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Abstract

There has been very little research done with regard to the physical modelling synthesis

of the Indian classical instrument the Sitar. This dissertation intends on expanding on

what little research has been done on the subject and attempts to model the instrument

with modern modelling techniques such as bi-directional digital waveguides, fractional

delay filtering and sympathetic vibrations.

It also presents a new and unique implementation of a dynamically changing delay line

for a non-linear system such as the sitar string that has not been attempted before. It

does this by making use of the Karplus-Strong algorithm to control the dynamic delay

line. The Karplus-Strong was chosen because of how naturally it represents the decay

of a string. This dissertation also attempts to model the sympathetic strings and the

resonator of the sitar.

iii



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Sitar Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.2 Physical Model . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 A Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 The Sitar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 Bridge Structure . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Simple Physical Model 15

iv



David Ronan The Physical Modelling of a Sitar

3.1 What is a model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Basic Vibrating String Model . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Mass-Spring System . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 D’Alemberts Solution of the Wave Equation . . . . . . . . . . . . . . . 21

3.5 Sampled Traveling-Wave Solution . . . . . . . . . . . . . . . . . . . . 23

4 Digital Waveguides 24

4.1 Karplus-Strong algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Karplus-Strong Extended . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Bi-directional Digital Waveguides . . . . . . . . . . . . . . . . . . . . 29

5 String and Instrument Modelling Techniques 32

5.1 Sympathetic String Vibrations . . . . . . . . . . . . . . . . . . . . . . 32

5.2 String Coupling Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Commuted Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Sitar Model 36

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Main Strings - poly∼ abstraction . . . . . . . . . . . . . . . . . . . . . 37

6.3 Bi-directional Digital Waveguide sub-patches . . . . . . . . . . . . . . 38

6.3.1 Bi-directional Digital Waveguide . . . . . . . . . . . . . . . . 38

6.3.2 Karplus-Strong Algorithm . . . . . . . . . . . . . . . . . . . . 41

6.4 Sympathetic Strings (Tarafdar) . . . . . . . . . . . . . . . . . . . . . . 42

6.5 Resonator (Kaddu) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Results and Analysis of Sitar Model 48

v



David Ronan The Physical Modelling of a Sitar

7.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Conclusion 53

References 55

vi



List of Figures

2.1 Yamaha LV1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Physical Modelling Synthesis Taxonomy . . . . . . . . . . . . . . . . . 10

2.3 The Indian classical instrument the Sitar (Courtney 2010). . . . . . . . 11

2.4 Badaa goraa and Chota goraa of a Sitar (Courtney 2010). . . . . . . . . 12

2.5 Shortening and lengthening of string due to the shape of the bridge. . . 14

3.1 The three cases of damping . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Karplus-Strong Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 A digital waveguide (Smith 2010). . . . . . . . . . . . . . . . . . . . . 30

4.3 Digital waveguide model of a rigidly terminated ideal string (Smith 2010). 31

6.1 Main patch screenshot. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Poly∼ screenshot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3 Bi-directional Digital Waveguide screenshot. . . . . . . . . . . . . . . 47

7.1 First Spectral Analysis. Red = Modelled Sitar, Blue = Real Sitar . . . . 49

7.2 Second Spectral Analysis. Red = Modelled Sitar, Blue = Real Sitar . . 50

7.3 Third Spectral Analysis. Red = Modelled Sitar, Blue = Real Sitar . . . 51

vii



Chapter 1

Introduction

Musical ideas are prisoners, more than one might believe, of musical de-

vices.

Pierre Schaeffer

1.1 Motivation

The physical modelling of musical instruments is an interesting topic that has been

around for quite some time now. It is effectively the term used for the computational

models of acoustic-mechanical instruments (Karjalainen et al 1993). These models con-

sist of normally simplified laws of physics that govern sound production. These physical

laws can be used to describe say the plucking of a string or the beating of a drum. What

is so exciting about this topic is that all the algorithms and methods that are being used

for modelling are derived from natural physical phenomena. It forces computer scien-
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tists to apply this natural phenomena to different data structures and logical procedures

and see it work on a very fundamental level.

This dissertation proposes a physical model of the Indian classical instrument the sitar.

The reason this instrument was chosen is because of the lack of existing physical models

for it. There are numerous articles and papers with regard to the classical western guitar

but unfortunately very little in-depth research has been done with regard to the sitar.

This may be because of the sitars complex structure as a sitar normally has six or seven

main playable strings and twenty or so strings that arent played but are there to vibrate

sympathetically. It also has a non-linear bridge structure, which is what gives it its very

distinct characteristic buzzing timbre that you would normally associate with the sitar.

As you can see already there is a lot more to consider when it comes to approximating

a model for this instrument as opposed to the six string classical western guitar.

1.2 Sitar Physical Model

The physical modelling approach used in this dissertation is that of digital waveguides.

Digital waveguide models consist of digital delay lines and digital filters. Together

these delay lines and digital filters can be understood to propagate and filter sampled

travelling-wave solutions to the wave equation (Smith 2010). The wave equation being

a very important second order partial differential equation that describes the propagation

of waves with speed v. Originally the idea was to use the Karplus-Strong algorithm for

the main and sympathetic string synthesis because of its low computational costs, but

on further research, investigation and testing it was decided to use the bi-directional

digital waveguide approach instead. The Karplus-Strong algorithm was reserved for

2
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another modelling approach. The bi-directional digital waveguide approach is a much

more realistic model of how a one-dimensional strings vibrates as it takes into account

two acoustic waves travelling in opposite directions. It is known that the vibration of

an ideal string can be described as the sum of two travelling waves going in opposite

directions (D’Alembert 1747).

Another modelling approach being used, that is unique to this particular model is with

regard to the non-linear bridge structure or jawari as it is officially called. The jawari

because of its design, requires that there be a dynamically changing delay line. The

amount of delay length modulation that occurs in this delay line is all relative to how

much energy is in the plucked string.

The length of the string changes more rapidly at the attack portion of the signal, grad-

ually becoming less random and settling into a more periodic pattern as the energy

dissipates through the termini. This particular problem of non-linearity was solved us-

ing the Karplus-Strong algorithm and a feedback loop from the main sitar string itself.

This technique is explained with more clarity further on in this document.

This model also makes use of fractional delay filtering. Fractional delay filtering is a

modelling technique that allows for the accurate cancellation and dampening of musical

tones (Lehtonen et al 2008). Normally delay lines in these particular types of models

could only be of an integer sample length causing the physically modelled instrument to

be slightly out of tune, but by using fractional delay filtering this can be avoided.

The other modelling techniques used in this particular model are all techniques that have

been used for the modelling of the western classical guitar but they have been adapted to

the sitar. These techniques include the sympathetic resonance of strings, comb filtering,

3
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all-pass filtering and body resonance filtering.

1.3 Implementation

The entire modelling process has been done with the visual programming language

MaxMSP. MaxMSP was chosen for its ease of use and the fact that it has many built in

digital signal processing objects that are required for the modelling process. Fortunately,

there was no need to install any MaxMSP externals for the model to be completed.

MaxMSP also allows the model to be realised in real-time as opposed to having to

compute the models expected outcome each time in a software program like Matlab.

This is gave a great advantage when it came to the testing and analysis stage. As it was

very easy to go back and make whatever slight changes were needed, and immediately

hear and see the result.

Originally the proposed idea was for this model to be realised in C++, developed as an

Audio Unit and distributed freely on the Internet but due to time constraints this was not

possible.

1.4 Dissertation Overview

1.4.1 Literature Review

The first part of this dissertation is the literature review. It is here that the fundamentals

of acoustics, wave motion, modelling techniques, digital waveguides and the structure
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of the sitar are covered. They are presented in the order that they need to be under-

stood.

Firstly the sitar will be examined. Giving a brief history of the instrument and then

looking at the actual physical parts of the instrument. It will show how these all work

together to give the sitar its unique timbre. It is also here that it shall be demonstrated

why the sitar is such a particularly difficult instrument to model and how the jawari

is the key to successful physical model. The next two subjects to be introduced are

acoustics and wave motion. Here the fundamental ideas of these physical phenomena

are presented on a basic level and shown how they are applied to a vibrating string.

Then finally different modelling techniques that are in use are explained as well as how

the Karplus-Strong algorithm and digital waveguides were developed. It will also show

the reader why the bi-directional digital waveguide technique was chosen and explain

why other techniques would have been unsuitable.

1.4.2 Physical Model

It is here that the bulk of all the work done to have the instrument realised as a physi-

cal model will be shown. It will go into detail as to how the sympathetic strings were

implemented and how the jawari were implemented as well as all the other implemen-

tations. Each of these particular implementations will be discussed in detail and it will

be explained why each of these particular techniques were selected. It will also explain

what particular components were crucial to achieving the characteristic buzzing timbre

of the sitar.
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1.4.3 Results and Analysis

Finally, spectral analysis of the sitar model will be performed and compared to the

spectral analysis of a real sitar. This will be done a number of times to show how the

sitar sound improved as the model was tweaked and played under different conditions.

The efficiency of the model will also be discussed, this is with respect to CPU power

and how much it uses. Furthermore, implementation issues will be discussed as there

was a number of these to do with MaxMSP

6



Chapter 2

Background

In this section a brief history and taxonomy of physical modelling synthesis is presented

to clarify to the reader the origins and the time line of the different approaches to mod-

elling as they were discovered.

2.1 A Brief History

The first use of physically-based models to synthesize sound was by John Kelly and

Carol Lochbaum (Kelly and Lochbaum 1962). They implemented a simplified model

of the human vocal tract as a one-dimensional acoustic tube of varying cross-section.

This being the most widely heard example of physical modelling for many years due to

its use in Stanley Kubricks 2001: A Space Odyssey.

Most of the early work on physical modelling of musical instruments was focused on

vibrating strings. This was due to them being computationally efficient to calculate. It
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was Pierre Ruiz in 1970 that was the first person to synthesize a musical instrument

using a physical model. It was then Ruiz and Lejaren Hiller that discovered the crucial

fact that the quality of a vibrating string sound was mainly defined by the way the string

loses energy (Hiller and Ruiz 1971a, 1971b). There were also approaches similar to

those of Ruiz and Lejaren Hiller published by McIntyre and Woodhouse that would

describe theoretical results to a realistically lossy vibrating string equation (McIntyre

and Woodhouse 1979).

These techniques were then to be followed by the Karplus-Strong algorithm (Karplus

and Strong 1983). The Karplus-Strong algorithm was discovered as a very simple com-

putational technique that arose from work being conducted on wavetable synthesis. It

works by feeding a burst of white noise into a feedback loop of length L samples. On

each loop the white noise is filtered over and over again by a simple averaging filter.

The frequency dependent decay of the white noise that was created for the first time on

a computer sounded very string like. What made this algorithm so successful was that

the realistic string timbres that could be produced with great ease were very computa-

tionally efficient. This was very relevant at the time as processing power would have

been limited by modern day standards.

Seemingly this technique had nothing to do with physics and it wasnt until David Jaffe

and Julius O. Smith did further work with it and showed a clearer understanding of it

in relation to the physics of a plucked string (Smith 1983; Jaffe and Smith 1983). It

was after this that Julius Smith introduced the theory of digital waveguides and gener-

alised the underlying ideas of the Karplus-Strong algorithm (Smith 1987). Karjalainen

says that digital waveguides are physically relevant abstractions yet computationally ef-

ficient models, not only for plucked strings but also for a variety of one-, two-, and
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three-dimensional acoustic systems (Karjalainen et al 1998). These digital waveguides

proved to be an efficient model of many linear and physical systems such as strings and

acoustic tubes. One of the advantages of these waveguides over analytical methods was

the ability to introduce non-linearity into models, just like those that would have to be

considered when modelling the sitar (Smith 1987). This enabled researchers to pro-

duce a variety of different realistic instrumental sounds. To this day digital waveguides

are still an important modern research topic with respect to the field of physical mod-

elling. They are still used extensively in many commercial synthesis systems whether

it is hardware or software. The first commercially available systems to include digital

waveguides were at the beginning of the 1990s. These were Bontempi-Farfisas MARS

in 1992 and then this was followed by Yamahas VL1 in 1993 (Fig. 2.1) .

Figure 2.1: Yamaha LV1.

2.2 A Taxonomy

Below in (Fig. 2.2) is a taxonomy of the different types of physical modelling synthesis

techniques that can be used. Only DWGs (Digital Waveguides) will be covered in this

dissertation. This figure has been given so the reader can see where this technique is

derived from and how it relates to other techniques.

9
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Figure 2.2: Physical Modelling Synthesis Taxonomy

2.3 The Sitar

2.3.1 Introduction

The Sitar is an ancient Indian string instrument that features heavily in Indian classical

music. This is usually accompanied by a Tambura, a similar drone type instrument that

is used to set the tonic of the piece being performed. The origin of the sitar can be dated

back as far as the Middle Ages and is usually found in the northern part of India. It does

not feature at all in southern Indian classical music.
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Figure 2.3: The Indian classical instrument the Sitar (Courtney 2010).

The sitar became popular in the western world through the music of Pandit Ravi Shankar

during the 1950s and George Harrison of the Beatles in the 1960s (Park 2008). It is

known for its unique timbral quality, which is attributed to its sympathetic strings, the

construction of its bridge, long hollow neck and its resonating chamber. It is usually

played by balancing the instrument between the players left foot and right knee. This

position then allows the players hands to move freely around the instrument neck with-

out having to support its weight.

11
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2.3.2 Mechanics

The sitar has a very unique and distinguishable body. On the neck of the instrument all

the frets are moveable, allowing for fine-tuning and the use of micro tones. There are

normally around 14 of those depending on the type of sitar. They are also suspended off

the neck allowing the sympathetic strings to run underneath and resonate freely.

Normally the sitar has about 21 strings, most of these being sympathetic. These sympa-

thetic strings are also known as tarb. These strings are never really ever touched as they

are just meant to vibrate sympathetically. Although, some times you may hear a player

strum all of these at once for effect. Along with the sympathetic strings you have the

main six or seven strings. Three of these, called chikaari, provide the drone while the

rest are used to play the melody (Courtney 2010).

Figure 2.4: Badaa goraa and Chota goraa of a Sitar (Courtney 2010).

The most important parts of the sitar are the two bridges. There is the large bridge

called the badaa goraa for holding the drone and melody strings in place and then there

is the smaller bridge for the sympathetic strings called the chota goraa. These bridges

are collectively know as jawari and are normally made of camel bone. The shape of

12
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the jawari are like slopes and it is the way the string interacts with these slopes when

plucked that give the sitar its particular timbre.

Initially, when the sitar string is plucked is, there is a shortening and lengthening of the

string relative that is relative to the slope which leads to the string generating overtones.

This particular process is explained in better detail further on in this dissertation.

The resonator of the sitar is called the Kadu. These are very delicate and are normally

just made of a gourd. On some sitars there are two resonators, the other one being at the

top of the neck. They gourds may also sometimes have strings inside of them that are

there to resonate sympathetically.

2.3.3 Bridge Structure

As mentioned before it is the sitars sloped bridge construction and its relationship to

the strings that give it its specific buzzing sound. What happens specifically is a type

of nonlinear distortion occurs when the string is plucked due to the interaction between

the camel bone and the string. This nonlinear distortion gives rise to the production

of additional overtones, which are somewhat similar to what happens when amplitude

clipping occurs. Due to the square wave like properties forced upon by the clipping it

creates odd harmonics that are not present in the original signal (Park 2008).

In the previous section it was mentioned that a shortening and lengthening of the string

relative to the jawari occurs. This also lends to the buzzing timbre and also affects

the pitch of the string ever so slightly since its length is changing. With regard to the

actual model this requires that there be a dynamically changing delay line. How this

was implemented is explained further on in the documentation.

13
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Figure 2.5: Shortening and lengthening of string due to the shape of the bridge.

Further to the point of how the nonlinear distortion occurs due to the friction between the

sting and jawari, the transverse waves that are travelling along the string interact with the

jawari just before they reach the point of termination. Normally in a stringed instrument

with a typical style bridge such as that of a western classical guitar this termination point

is where the waves usually flip over and travel in the opposite direction. However, in

the sitar, before this happens, the larger amplitude transverse waves in the string interact

with the jawari earlier than the smaller ones, altering the strings shape and causing it to

bulge. The transverse waves are not terminated at this point but interact with the jawari,

unlike the smaller ones, which mostly reflect. This greatly increases the higher partial

content at large wave amplitudes but obviously not as much at smaller wave amplitudes.

This interaction between the string and jawari reduces gain substantially, as the energy

is transferred to the louder, higher partials. The imprecise termination point of the sitar

is akin to the fretless electric bass.

14



Chapter 3

Simple Physical Model

3.1 What is a model?

Model-building is a fundamental human activity. For our purposes, a model can be

defined as any form of computation that predicts the behavior of a physical object or

phenomenon based on its initial state and any “input” forces. Our first successful mod-

els occurred in our heads (Hawkins 2004). It is effectively constructing a simplified

abstract view of what normally may be a very complex system. Gaining an understand-

ing of a complex natural system such as a musical instrument is usually accomplished

by combining or building upon simpler and more basic models. If say we were to look

at a guitar. The guitar is comprised of many mechanical parts such as the strings, res-

onator and the bridge. Each of these parts are the building blocks to the overall complex

model. For virtual musical instruments and audio effects, the model replaces the real

thing allowing us have a deeper understanding of how it works (Smith 2010).
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3.2 Basic Vibrating String Model

The basic model of a vibrating string is based on Newtonian principles. The vibrations

in the string are transverse waves or in this case transverse acoustic waves. To derive the

equations governing small transverse vibrations of an elastic string, which is stretched to

length L you have to make simplifying assumptions in order that the resulting equation

does not become too complex.

First of all place the string along the x − axis, stretch it to length L, and fix it at the

ends x = 0 and x = L. The string is then distorted at some instant, say t = 0, it is

then released and allowed to vibrate. The problem is to determine the vibrations of the

string, that is, to find its deflection at u(x, t) at any point x and where t > 0.

In order to do this the following can be assumed.

1. The mass of the string per unit length is a constant. The string is perfectly elastic and

doesnt offer any resistance to bending.

2. The tension caused by stretching the string before fixing it at the end points is so

large that the action of the gravitational force on the string can be neglected.

3. The motion of the string is a small transverse vibration in a vertical plane, that is,

each particle of the string moves strictly vertically.

These assumptions are made so that the solutions to the one-dimensional wave equa-

tion u(x, t) that are obtained will reasonably well describe the small vibrations of the

physical string. These assumptions give us the partial differential equation(PDE) for the

one-dimensional wave equation as follows:

16
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∂2u

∂t2
= c2

∂2u

∂x2
c2 =

T

ρ
(3.1)

Where T is the string tension in the string and ρ is the linear mass density of the string.

The derivation of this equation is beyond the scope of this dissertation but can be found

in any applied mathematics textbook (Kreyzieg 1999). This PDE is the starting point

for both digital waveguide models and finite difference schemes.

3.3 Mass-Spring System

This section discusses the principles behind the motions of a basic mechanical system,

a mass on an elastic spring. The string of a musical instrument is a mass-spring sys-

tem.

If you are to take an ordinary spring and suspend it vertically from a support and then

at the other end attach a body of mass m. Here you are to assume that m is so large you

can disregard the mass of the spring. Then pull the body down a certain distance and

then release it. You will notice that it undergoes a motion. This motion is governed by

Newtons second law:

Mass× Acceleration = my′′ = Force (3.2)

Where Force is the resultant of all the forces acting on the body. Here, y′′ = d2y
dt2

, where

y(t) is the displacement of the body and t is time. At first the string is unstretched, but

then when the body is attached, the body stretches the string by an amount s0. This

17
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causes and upward force F0 in the spring. It has been experimentally shown that this

restoring force F0 is relative to stretch, say,

F0 = −ks0 (3.3)

This is known as Hookes law. k is called the spring constant. Where the larger the value

for k, the more stiff the spring is, hence giving a smaller s0. s0 being the amount of

displacement.

The extension of s0 is such that F0 balances the weight W = mg. Consequently F0 +

W = −ks0 +mg = 0. These forces do not affect the motion. The entire system is at

rest, this is what is called the static equilibrium of the system. The position of the body

at the static equilibrium position is y = 0. We measure the displacement of the body

from the static equilibrium position as y(t). The main point is that F0 is the restoring

force. It has the tendency to restore the system back to its static equilibrium position

y = 0.

With this understanding of a how a mass-spring system works, it brings us on to damped

and undamped mass-spring systems. Every system has damping otherwise it would

just keep moving forever. It would be like if a string was plucked and it kept vibrating

forever. Although, to explain the next point we are going to look at an undamped system

first.

Let’s take for an example an iron weight on the end of a spring. In this situation F1 is

the only force in (3.2) causing the motion. Hence, making my′′ = −ky from (3.2). This

means that the model for the mass-spring system without damping becomes:

18
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my′′ + ky = 0 (3.4)

By finding the complex roots of this equation we get the general solution

y(t) = A cosω0t+B sinω0t ω0 =

√
k

m
(3.5)

The corresponding motion to this equation is called a harmonic oscillation. These har-

monic oscillations are similar to the waves that occur when a string is plucked. When

the string is plucked or in this case when the iron weight is displaced the spring makes

these harmonic oscillations. By applying the addition formula for cos, this equation can

be written as

y(t) = C cos(ω0t− g) (3.6)

And, since the period of the trigonometric function (3.6) is 2π
ω0

, the body executes at

ω0

2π
cycles per second. This quantity is called the frequency of the oscillation and is

measured in Hertz.

In the case where the system has been damped which is more likely to be the situation.

We connect the mass to a dashpot to demonstrate its properties. By looking at the

equation governing the system we can derive three different cases. The damped system

equation being

my′′ + cy′ + ky = 0 (3.7)

19



David Ronan The Physical Modelling of a Sitar

Where −cy′ = F2, this being the force imposed by the dashpot. The three different

cases are, overdamping, critical damping and underdamping. It is the roots of equation

(3.7) that determine this.

Case 1: In the overdamping case the body does not oscillate since the damping takes the

energy from the the system and there is no external force that keeps the motion going.

The equation (3.7) has distinct real roots λ1, λ2 in this case

Case 2: The critical case marks the border between the non-oscillatory motions and

oscillations; this explains its name ”critical case”. It has to do with the fact equation

(3.7) has a real double root.

Case 3: Underdamping is the most interesting case. Underdamping occurs when the

roots of the equation are complex conjugate roots. Underdamping would be similar to

the case in most strings on an instrument. When the string is initially plucked it settles

into a periodic behaviour corresponding to a harmonic oscillation.

These three cases are illustrated in Fig. (3.1)

Figure 3.1: The three cases of damping

There is a particular modeling technique based solely on this mass-spring paradigm

as mentioned before (Hiller and Ruiz 1979). As can be seen it requires the precise
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description of all the physical characteristics of the vibrating objects and furthermore it

requires that you stipulate the boundary conditions for the PDE of the one-dimensional

wave equation. It also requires the physical description of the excitation mechanism.

The difference equations that were presented earlier are the equations that are then used

to compute what the resulting sound output will be (Bianchini and Cipriani 2008).

3.4 D’Alemberts Solution of the Wave Equation

With D’Alemberts travelling wave solution it can be shown that the vibration of an ideal

string can be described as the sum of two travelling waves going in opposite directions

using the wave equation. We will start with the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
c2 =

T

ρ
(3.8)

If we are to denote the right travelling waves and the left travelling waves by the follow-

ing equations:

v = x+ ct, z = x− ct (3.9)

Then u becomes a function of v and z. The derivates of the wave equation in (3.8) can

now be expressed in terms of the derivatives with respect to v and z by the use of the

chain rule. This becomes

ux = uvvx + uzzx = uv + uz (3.10)

We now apply the chain rule to the right side of the equation giving us
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uxx = (uv + uz)x = (uv + uz)vvx + (uv + uz)zzx = uvv + 2uvz + uzz (3.11)

Now we transform the other derivative in (3.8) giving

utt = c2(uvv2uvz + uzz) (3.12)

By inserting the two results into (3.8) we get

uvz ≡
∂2u

∂z∂v
= 0 (3.13)

This resulting equation can now be solved by two successive integrations with respect

to z.

∂u

∂v
= h(v) (3.14)

where h(v) is an arbitrary function of v. Integrating this with respect to v gives

u =

∫
h(v)dv + ψ(z) (3.15)

where ψ(z) is an arbitrary function of z. Since the integral is a function of v, say, φ(v),

the solution u is of the form u = φ(v) + ψ(z). Then because of (3.4) we get

u(x, t) = φ(x+ ct) + ψ(x− ct) (3.16)
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This is known as D’Alemberts solution of the wave equation. The traveling-wave so-

lution of the wave equation was first published by d’Alembert in 1747 (D’Alembert

1747)(Kreyszieg 1999). The bi-directional digital waveguide is based on this very prin-

ciple and will be discussed further on the dissertation.

3.5 Sampled Traveling-Wave Solution

In order to use the traveling wave solution in the ”digital domain” it is neccesary that

you sample the traveling-wave amplitudes at intervals of T seconds. The continu-

ous traveling-wave solution to the wave equation given in (3.16) can be sampled to

give

y(nT,mX) = φ(nT − mX

c
) + ψ(nT +

mX

c
) (set X = cT ) (3.17)

= φ(nT −mT ) + ψ(nT +mT ) (3.18)

, y+(n−m) + y−(n+m) (3.19)

where x = cT denotes the spatial sampling interval in meters, T denotes the time

sampling interval in seconds, and y+ and y− are defined for notational convenience

(Smith 2010) .

23



Chapter 4

Digital Waveguides

In this chapter the theory of digital waveguides is presented and explained. A lot of

what is presented in this chapter has already been touched on in chapter two. Here the

Karplus-Strong algorithm and the extended version of it will be explained in detail. This

chapter will also introduce the bi-directional digital waveguide, this is the modelling

technique that is central to the modelling of the sitar strings.

4.1 Karplus-Strong algorithm

The Karplus-Strong algorithm was discovered by two men around 1980. There names

being Alan Karplus and Kevin Strong. The paper on this algorithm was published in

1983. It was Alex Strong in December of 1978 that conceived it simplest modification

and called it the Plucked-String algorithm. How it works is by simply averaging two

successive samples (Karplus and Strong 1983). This can be written mathematically
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as

Yt =
1

2
(Yt−p + Yt−p−1) (4.1)

Figure 4.1: Karplus-Strong Algorithm

It was discovered that this averaging process produced a slow decay of whatever wave-

form was being computed by it. This algorithm produced a pitch of period p+ 1
2

samples

and sounded similar to the decay of a plucked string. What was so remarkable about this

algorithm was that there was no multiplication required. Making it extremely computa-

tionally efficient. Back then they did not have anywhere near the same microprocessing

power that we have now days so this would have been fast and easy to implement con-

sidering the limitations at the time (Karplus and Strong 1983).

Strong says the naturalness of the sound derives largely from differing decay rates for

the different harmonics. No matter what initial spectrum a tone has, it decays to an

almost pure sine wave, eventually decaying to a constant value (silence) (Karplus and

Strong 1983).

The actual excitation of the algorithm requires that a noise burst be fed into the system.

How Strong originally did this was by feeding the algorithm with a wavetable filled with

random values. The use of a different random wavetable every time had the advantage

of giving each repetition of the same pitch a slightly different harmonic structure. This
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gave each note its own character sort of like a real instrument. Normally what what

would be used to excite the system would be a burst of pink or white noise (Karplus and

Strong 1983).

Once the noise burst is fed into the system it is immediately output and then fed back

into a delay line of L samples long. The output of this delay line is then fed into the

averaging filter as described already. This is normally a first order low pass filter. Also,

the gain of the filter must always be less than 1 or else the signal will never decay and

could make the system unstable. The output of the averaging filter is then output and at

the same time sent back into the delay line. This process keeps repeating until the signal

is averaged out to silence (Karplus and Strong 1983).

The length L in samples of the delay line determines the fundamental pitch of the note

being played. L is determined by the equation L = Fs/F1 where Fs is the sampling

frequency. The overall effect of the algorithm is quite realistic and very similar to a

plucked string sound considering it is such a simplistic procedure. It may not have a

natural sounding guitar string tone but there are different extensions that can be applied

to help this, which will be discussed next. Alan Karplus conceived a simple variation of

the algorithm for drum timbres. Since we are only interested in strings, this will not be

discussed.

4.2 Karplus-Strong Extended

Around the same time that the paper about the original Karplus-Strong algorithm was

published, David A. Jaffe and Julius O. Smith published a paper with regard to different

extensions to the original algorithm. The need to implement these extensions came
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from the musical needs that arose out of the composition of May All Your Children Be

Acrobats (1981) and Silicon Valley Breakdown (1982) both by David Jaffe (Jaffe and

Smith, 1983).

One of the first modifications made was with regard to the tuning. The fact that the

delay line length L had to be an integer caused tuning problems. The tuning problems

occurred at high frequencies. The fundamental frequency f1 = fs
(N+ 1

2
)
, this meant that

the pitches were rounded off. This was barely noticeable for low pitches (large N )

but as the pitch increased it becomes more and more off sounding (Jaffe and Smith,

1983).

The solution to this problem was fractional delay filtering. It can be shown experi-

mentally that by using a fractional delay filter there is a more accurate cancellation and

dampening of musical tone partials (Lehtonen et al 2008). What was needed was the

introduction of a filter into the feedback loop and that would delay the signal slightly

with out altering the loop gain. The filter that was introduced was an all-pass filter. It

ensured there was no change to the gain of the signal. The equation for this filter and its

transfer function is as follows

Yn = CXn +Xn−1 − Cyn−1 (4.2)

Hc(z) ,
(C + z−1)

1 + Cz−1
(4.3)

The only thing that the all-pass filter affected wass the phase of the signal (Jaffe and

Smith, 1983).
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Another problem with the algorithm was with regard decay-time, the difference between

the decay times for a low pitch and a high pitch were drastically different. The ability

to control decay time is very important if you want to have a realistic realisation of

a plucked string. Consequently, Jaffe and Smith found methods that could be used to

control decay time. One of the methods was to introduce a loss factor ρ. Where equation

(4.1) becomes:

Yn = Xn + ρ
Yn−N + Yn−(N+1)

2
(4.4)

Where |ρ| 5 1 if the string is to be stable. Essentially what decay shortening does is

produce a damped version of the Karplus-Strong algorithm. Where low-pitched notes

are comparable to low notes on real strings. Another technique that was employed was

decay stretching. This was done by changing the feedback average (Ha) to a two-point

weighted average. This reduces the amount of energy loss at high frequencies. For the

greatest control it is said both the uniform loss method and two-point-averaging method

should be used together (Jaffe and Smith, 1983).

Dynamics was another issue that was dealt with. Where the output of the system was

directly related to the noise burst being input into the system. What enabled this to work

was, since the strings that were plucked hard had more energy in the higher partials than

the strings plucked lightly, a one-pole low pass filter could be used to attenuate these

higher partials before they were fed into the system. This allowed the user to be able to

set if the string was to sound muted when it was plucked or alternatively sound like an

open string. All that the user had to do was adjust the cut-off point of the one-pole low

pass filter and you could get varying excitation timbres (Jaffe and Smith, 1983).

Some of the other extensions had to do with pick position and pick direction. Pick
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position involved implementing a comb filter just after the noise burst. Depending on

the delay length of the comb filter you can pick the string at different positions allowing

you to suppress certain harmonics. Pick direction can then also be controlled by lowpass

filtering the noise burst before it is fed into the delay line or by using a rich harmonic

spectrum as opposed to a noise burst. Another way to affect the noise burst is to change

the duration of the noise burst.

In order to model sympathetic string vibration, Jaffe and Smith sent a small percentage

of the string output from a plucked string to another string that had been tuned to a

different pitch. Since the sympathetic string was tuned to a different pitch all the partials

of the plucked string that did not coincide with the sympathetic string would have been

attenuated (Jaffe and Smith, 1983). There will be a further discussion with regard to

sympathetic strings further on in this dissertation, as it is central to the sitar model. It

can bee seen here that through these extensions it can make the very basic algorithm

much more expressive and realistic sounding. Normally the Karplus-Strong algorithm,

although very similar to a plucked string, does have a very artificial sound.

4.3 Bi-directional Digital Waveguides

A bi-directional digital waveguide is essentially a bi-directional delay line at some wave

impedance. This is also considered a lossless digital waveguide. Wave impedance is

basically the ratio between the force of a wave to the velocity of a wave. For linear time

invariant systems, impedance may vary with angular frequency (ω) such that
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R(ω) =
F (ω)

V (ω)
=

Force(ω)

V elocity(ω)
ω = 2πf (4.5)

How the bi-directional waveguide works is that each delay line contains a sampled

acoustic travelling wave (Smith 2010).

Figure 4.2: A digital waveguide (Smith 2010).

Since it is a bi-directional waveguide, this means that there is a sampled acoustic wave

travelling from left to right and right to left in each of the delay lines. This models

d’Alemberts travelling wave solution whereby it can be shown that the vibration of

an ideal string can be described as the sum of two travelling waves going in opposite

direction (d’Alembert 1747).

The type of bi-directional digital waveguide that we will be dealing with in this disser-

tation is one with rigid terminations. If we terminate a length L ideal string at x = 0

and x = L, we then have the boundary conditions

y(t, 0) = 0 y(t, L) = 0 (4.6)

How this system works is, the excitation is fed into the system at the arbitrary point ζ

in Fig. (4.3). The acoustic travelling waves proceed to travel around the bi-directional

waveguide being delayed by N
2

samples by the delay lines. It can be seen in the diagram
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Figure 4.3: Digital waveguide model of a rigidly terminated ideal string (Smith 2010).

that there are the two termination points as mentioned before. These would normally be

the nut and bridge of say a guitar. The reader may also notice the −1 at each of these

termination points. The −1 is there to invert the phase of the acoustic wave. Just like

how an acoustic wave would flip over and change direction in the real physical world if

it were to meet the termination point.

This is a far more realistic simulation of a travelling acoustic wave than the single delay

line technique formulated by Karplus and Strong. The example that has been discussed

here is for only a one-dimensional waveguide. This technique can be extended to two

and three dimensional waveguides and be used to model drum skins using digital waveg-

uide meshes.

A number of the different extensions that were discussed in the previous section can

be applied to the bi-directional digital waveguide such as fractional delay filtering and

excitation position. Matti Karjalainen et al have looked at the possibilities of this in

another paper. They employed two different models, one where the bi-directional digital

waveguide had a bridge output and the other where it had a pick-up output (Karjalainen

et al 1998). The sitar model demonstrated in this dissertation was loosely based around

this.
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Chapter 5

String and Instrument Modelling

Techniques

This chapter looks at some of the modelling techniques that have been developed in

recent years. Some are relevant to the sitar while others are not. They are discussed

because they would have been considered when it came to figuring out how to model

the different parts of the sitar.

5.1 Sympathetic String Vibrations

In nearly all stringed musical instruments where there are adjoining strings, sympathetic

vibrations can occur. Whereby if one string is excited, some of the other strings may also

be excited via the body through resonance. This phenomenon is known as sympathetic

vibration and is defined in the acoustic dictionary as ”resonant or near-resonant response

of a mechanical or acoustical system excited by energy from an adjoining system in
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steady-state vibration” (Morefy 2001) (Carou et al 2005).

At the bridge of say a western classical guitar, all the strings induce the movement of the

top plate. Since this top plate is moving and all the strings are attached to the same plate,

this means that all the strings are affected. Nakaerts says that strings cannot be seen as

independent entities but must be seen as larger, coupled system (Nakaerts 2001).

A simpler approach to sympathetic vibrations was taken in the Karplus-Strong exten-

sions paper. They basically took the approach of sending a small percentage of the main

plucked string to another string tuned differently (Jaffe and Smith 1989).

Sympathetic vibrations are essential to the modelling process if you are to have a natural

sounding model since sympathetic vibrations exist in nearly all stringed instruments.

It is particularly important to the sitar since it has a number of strings that are only

supposed to vibrate sympathetically.

With regard to the sitar a rather simplistic but effective approach was taken, this will be

discussed further on in the dissertation.

5.2 String Coupling Effects

In natural string instruments several coupling mechanisms exist. In a real string, there

are two orthogonal planes of transverse waves, which are directly coupled together.

There are also longitudinal waves, which are related to string tension.

To realise the two orthogonal planes, you have to consider the transverse vibrations in

the horizontal and vertical planes of polarisation. Smith says that no vibrating string

in musical acoustics is truly rigidly terminated, because such a string would produce
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no sound through the body of the instrument. Termination results in coupling of the

horizontal and vertical planes of vibration. In typical acoustic stringed instruments,

nearly all of this coupling takes place at the bridge of the instrument (Smith 2010).

Since that in real instruments the horizontal and vertical waves react differently with

the bridge, for example on the guitar the string is restricted more in the horizontal plane

of vibration as opposed to the vertical plane, this requires that when modelling the two

planes, damping parameters will need to be different for each plane. This means that the

string will decay faster in the horizontal plane and have an effect on the tone of string.

What happens is a two stage amplitude envelope is created because of the unequal rate of

decay between the two planes. Smith says that the initial fast decay gives a strong onset

to the note, while the slower late decay provides a long lasting sustain–two normally

opposing but desirable features (Smith 2010).

5.3 Commuted Synthesis

Commuted synthesis is a modelling technique that is used to model the resonator of an

instrument. Typically the energy from a plucked string is transmitted to the bridge and

then to some resonating acoustic structure. Typically this resonating structure or res-

onator imposes its own frequency response on the sound being radiated and works like

a very large filter. One of the approaches that is normally taken to model the resonator

is to figure out the body resonances of the instrument in question and then use a band-

pass filter bank to apply them. This can be computationally expensive so this is why the

commuted technique is used.

This technique only works for linear time-invariant systems, the idea is to commute the
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string and the resonator. The excitation method is convolved with the impulse response

of the instrument being modelled. This is the basic idea behind commuted synthesis,

and it greatly reduces the complexity of stringed instrument implementations, since the

body filter is replaced by an inexpensive lookup table (Smith, 2010).

However, due to the non-linear nature of the sitar string, commuted synthesis could

not be used. This technique was included in the dissertation as it was one of the main

resonator modelling techniques that was being considered when researching the sitar

model.
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Chapter 6

Sitar Model

6.1 Introduction

The sitar model as mentioned before was developed and tested in MaxMSP. The entire

patch consists of three main parts. There is the poly∼ abstraction of the main strings,

the sub patch for the sympathetic strings and then there is a bank of digital filters being

used as a means of modelling the resonator. All these components fit together to model

the sitar. How the patch is controlled either by an external MIDI device or by the kslider

object in MaxMSP.

The most important part of the patch is the poly∼ abstraction. It is within this abstrac-

tion the main strings are modelled and it also gives the patch its seven note polyphony.

Since this is the most important part of the model, it is the first part that will be discussed

in detail.
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6.2 Main Strings - poly∼ abstraction

It is this part of the patch contains the main digital waveguides, the excitation mech-

anism and different objects to make sure the poly∼ functions correctly. These can be

seen in Fig. (7.2).

The first group of objects in the patch working from left to right are there to receive the

pitch and velocity to be used in the waveguide sub patches, there is also a thispoly∼

object to decide whether that instance of poly∼ is busy or not.

The next group of objects in Fig. (7.2) are there to excite the strings. There is a linear

ramp generator there to create a pink noise envelope. Pink noise is used because all the

frequencies present are of equal amplitude and also because of its random nature, mean-

ing that no two excitations will be the same. The original idea was to use a recording

of a sitar impulse response and use the commuted waveguide synthesis technique but as

explained before due to the sitars non-linear model this would not have been effective.

There is also a comb filter setup just before the excitation is sent to the strings. This

comb filter is there so that the user can adjust the pick position with the slider in the

main patch. This a Karplus-Strong extended algorithm concept as discussed earlier in

this document. The slider can be seen in Fig. (7.1).

The next group of objects in Fig. (7.2) are the bi-directional digital waveguide sub

patches. The reason there are two of these is because of string coupling. One of these

is the string vibrating in the horizontal plane and the other is vibrating in the vertical

plane. This gives the string a more realistic sound. Normally if just one waveguide

is used it sounds very static. These are both then summed together to give the overall

string sound. They are also scaled since they are being summed together. The contents
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of the digital waveguide sub patches will be discussed further on in this section.

After the waveguides have been summed there is a group of objects to test to see if the

gain of the strings is less than 0.001 and if so, it mutes the poly∼ instance it is in and set

its status to being not busy. This was implemented to make poly∼more effective.

6.3 Bi-directional Digital Waveguide sub-patches

This is the most important part of the whole patch and can be seen in Fig. (7.3). This

particular sub-patch is broken in to two parts. On the left side you have the bi-directional

digital waveguide of the string and then on the right you have a Karplus-Strong algo-

rithm implementation. It is this KS algorithm that is fundamental in giving the string its

non-linear distortion and its characteristic buzzing timbre. First of all the bi-directional

digital waveguide part of the sub-patch will be explained and then the KS algorithm

implementation will be tied in.

6.3.1 Bi-directional Digital Waveguide

The bi-directional digital waveguide that has been implemented in this patch also uses

some of the Karplus-Strong extended algorithm concepts. It makes use of the tuning all-

pass filter, dynamic-level lowpass filter and string damping lowpass filter as well as a

few implementations that were necessary for the string to sound like a sitar string.

As soon as the string is excited it is passed through a one-pole lowpass filter, this is the

dynamic-level filter. The value for this filter is controlled from the main patch and there

is one for each dimension of the string. This filter controls the timbre of the string each
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time it is plucked. It is used to make the string sound as if it has been muted, if this is

the desired effect.

After the one-pole filter the excitation enters the bi-directional digital waveguide. It can

be seen in Fig. (7.3) that there are four tapin∼ and tapout∼ objects. These objects are

effectively the delay lines. These are responsible for the pitch of the string. If you were

to unwind the waveguide and have the two *∼ −1 multipliers as your termination points

of the string, you will see that each delay line is effectively divided in two by the two

tapin∼ tapout∼ pairs. The reason for this being that excitation of the string has to be

at least in the centre of the delay line and be fed into the circuit at the same position on

each direction of the delay line. This makes sense, since if you were to pluck a string in

a real physical system, you can only do so at one position at any given time.

If you look at the delay sub-patch within the patch in Fig. (7.3) you will see that this

is the mechanism that controls the delay time for tapin∼ tapout∼. How this works is

that the MIDI value received is converted into the frequency of the note being played.

Since frequency is measured in Hertz and Hertz means cycles per second, the frequency

value is divided into 1000 to give the delay time in milliseconds. The reader may also

notice that this is then fed into a mstosamps∼ object, one is subtracted from it and then

a sampstoms∼ object is used to convert back again. The mstosamps∼ and sampstoms∼

are used simply just to convert from milliseconds to samples. The reason why 1 is

subtracted is because the creators of MaxMSP have designed the tapin∼ tapout∼ to

have a minimum delay of one vector size and this needs to be compensated for.

Once the excitation is in the waveguide it moves though it just like a transverse wave

would in a real physical system. The *∼ −1 multipliers are there to reverse the phase of

the wave every time it passes through them. The exact same way a wave flips over when
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it reaches its termination point in a real physical system. This is why the two *∼ −1

objects are considered the termination points.

The string damping dials on the main patch control the damping lowpass filters featured

in the delay loop, these can be seen in Fig. (7.1). The velocity of the note being played

is mapped to the MIDI values 100-127 and then these are converted to frequency values

for the lowpass filters. This is how the string damping mechanism works.

The string damping is then followed by a clip∼ so as to normalise the signal going

through the digital waveguide. This is just in case the model becomes unstable. This is

then followed by a multiplier; the multiplier is used to set the rate at which the strings

decay. The velocity of the note being played is mapped to the values of each of multi-

pliers. It works on the principle that the larger the velocity the longer it will take for the

strings to decay.

The last object left to discuss in the digital waveguide is the all-pass filter. This is the

most important part of the waveguide as it is the part that gives the delay line a fractional

delay and also dynamically changes the delay length giving the sitar its characteristic

timbre. The middle inlet for the all-pass object is what controls the delay time of the

filter. Two different processes modulate this value. The main one being the Karplus-

Strong algorithm that is to the right of the bi-directional digital waveguide and the other

is by a sub-patch called delayallpass. Within the delayallpass sub-patch you have a

mechanism to create a slight vibrato, this is to create the overall beating effect between

the strings. The amount of beating that occurs is relative to the velocity of the note

being played. At any one time that a string is being played all the other strings that can

be active through the poly∼ object are receiving a very slight signal, which is being

modulated by the delayallpass sub-patch. This is to help model sympathetic resonance
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between the main strings.

6.3.2 Karplus-Strong Algorithm

The Karplus-Strong algorithm in this case is not being used to generate sound but as

a way to control the delay length of the bi-directional waveguide dynamically. This

was implemented because it was felt that the best way to control the decay rate of the

dynamically changing delay length of the bi-directional waveguide was by using some-

thing similar to the waveguide. The KS algorithm was chosen because it is inexpensive

and it would naturally compliment it. The KS algorithm receives the same excitation

and pitch values as the bi-directional waveguide so that decay rates of the two are some-

what similar.

The velocity of the note being played also affects how much the KS algorithm modulates

the decay rate of the dynamically changing delay length of the bi-directional waveguide.

It can be seen in the patch that the receive object known as thisbridgelength controls

this. This takes the velocity of each note being played and maps it to suitable bridge

modulation parameters. How the velocity of the note affects the dynamic delay length is

modelled on how it works for a real sitar. The output of the KS algorithm is then fed into

a sub-patch that smoothes out the changes in delay length. If this was not implemented

it would drastically affect how the sitar sounded due to the sudden changes in delay

length and cause glitches in the audio output.

Some of the output of the bi-directional digital waveguide is also fed back into the KS

algorithm. This keeps the energy in the KS algorithm relative to the energy in the bi-

directional delay line.
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The rate of change of the dynamic delay length changes more randomly in the attack

portion of the signal, over time it becomes less random and then settles into a more

periodic pattern as the strings waveform itself becomes more periodic. Eventually this

approaches zero. It could not be found anywhere in all of the literature reviewed or

on the Internet, this approach to non-linear distortion being implemented and is unique

to this attempt at physically modelling the sitar. It is hoped that this approach to the

modelling of this type of non-linear distortion is considered for other instruments.

6.4 Sympathetic Strings (Tarafdar)

The sympathetic strings of the sitar are on a separate bridge to the main strings. The

bridge has the same shape as the main bridge, so the sympathetic strings were imple-

mented in a similar way to the main ones. However there are a few differences, one of

them being that each of the individual sympathetic strings can be tuned to whatever note

the user desires with respect to the western musical scale. The other difference being

that there is no string coupling, this due to the limitations of the CPU.

How the sympathetic string sub-patch works is, that all the energy that comes from the

main strings is scaled and fed into each of the individual sympathetic strings. It is scaled

due to the amount of energy that would be lost in the energy travelling from one bridge

to another. This amount of scaling was determined by trial and error. Also, the damping

on each of the strings is higher than on the main strings, this due to that fact that these

strings arent being plucked but are only resonating with respect to the main strings. The

sympathetic strings in the sub patch are by default tuned to what they would typically

be tuned to in Indian classical music. Although this does vary greatly with respect to
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the raga being played. Finally, the output of all the strings is summed and scaled again.

Having these strings adds greater depth to the sound of the model. The instrument

sounds very dry when they are turned off.

6.5 Resonator (Kaddu)

Originally the plan was to use commuted synthesis to model the resonator as mentioned

already. On further investigation and research it was determined that this technique is

unsuitable for a sitar due to its non-linear model. This technique only works for linear

time invariant systems. Commuted synthesis is where you take an impulse response

recording of the resonator of the instrument being modelled and convolve this recording

with the excitation mechanism in the model. This is the basic idea behind commuted

synthesis, and it greatly reduces the complexity of stringed instrument implementations,

since the body filter is replaced by an inexpensive lookup table (Smith 1993).

Instead the implementation used in this model is a bank of bandpass filters set to dif-

ferent frequencies and Q values. Unfortunately an actual sitar was not obtainable at the

time that this implementation was being developed so an analysis of the actual body

resonances of a sitar was not performed. The resonances used were similar to those of a

Martin D-28 guitar (Fletcher and Rossing, 2005). The exact resonances in Fletcher and

Rossings book weren’t used, they were used mainly as a guideline, and a lot of trial and

error was involved in getting it to sound correct. There is a massive contrast between

the sound of the sitar with the resonator and it not having it. It was the fffb∼ object

that was used for the filter bank. The fffb∼ object is a MaxMSP implementation of a

bank of bandpass filter objects. It is much more efficient to use this instead of a group
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of reson∼ objects.

6.6 Conclusion

As the reader can see, the approach that was used to model the sitar was to develop each

part separately and then tie them all together at the end. It can also be seen that it is

the dynamic delay line that is very important in giving the sitar its characteristic timbre.

This is not to say that the resonator and sympathetic strings are not as important. As

mentioned previously, without these the instrument would sound very artificial and not

have any natural sounding qualities to it. It is also hoped that the unique approach to

the dynamic delay line that was implemented has made the model more natural sound-

ing.
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Figure 6.1: Main patch screenshot.
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Figure 6.2: Poly∼ screenshot.
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Figure 6.3: Bi-directional Digital Waveguide screenshot.

47



Chapter 7

Results and Analysis of Sitar Model

How the analysis was approached was by taking the recording of a real sitar playing

the note F4, then this note was played a few different times on the modelled sitar and

recorded. Audacity was then used to perform spectral analysis on each of the recordings.

The type of analysis done was Fourier analysis with a Hanning window and a window

size of 512.

Since every note played by the sitar is going to be different every time due to the ran-

dom nature of every pink noise burst excitation not every modelled sitar pluck analysis

will be the same. Once the first recording was made, analysed and then compared a

second recording was made with a number of adjustments, which will be discussed in a

moment. The results are as follows:

We see in the first analysis Fig. (7.1), the modelled sitar is very close to the real sitar

up until roughly 10,000 Hz. We see the fundamental is close and a lot of the partials

are the same but the modelled sitar is lacking a lot of energy in the higher partials. This
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Figure 7.1: First Spectral Analysis. Red = Modelled Sitar, Blue = Real Sitar

could either be due to an incorrect tuning of the body resonances or it could be due to a

lack of energy being supplied to sympathetic strings. Before the second recording was

made a few adjustments were made to the sitar model. One of the body resonances was

slightly changed and also the amount energy being sent to the sympathetic strings was

increased slightly. It can be seen straight away in Fig. (7.2) that there is a difference.

It seems very similar to the real sitar up until 12,500 Hz and then it begins to taper off,

but at the same time the difference between the upper partials isnt as severe. This could

possible be due to the tuning of the sitars sympathetic strings.

A third recording was made but this time the sitars sympathetic strings were tuned up a

whole octave. It can be seen in Fig. (7.2) the results were a lot more satisfactory. There

wasn’t as big a difference between the higher partials.
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Figure 7.2: Second Spectral Analysis. Red = Modelled Sitar, Blue = Real Sitar

7.1 Efficiency

The model was tested on a MacBook Pro with a 2.26 Ghz Intel Core 2 Duo processor.

It was found that the most amount of CPU power that was used was 62%. Considering

the amount of different strings that were modelled this is very efficient. In the model

you have a seven note polyphony poly∼ abstraction and thirteen sympathetic strings all

being used at the same time.

Although, when it was tested using string coupling in three different dimensions it would

max out the CPU and distortion occurred. The third dimension being the longitudinal
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Figure 7.3: Third Spectral Analysis. Red = Modelled Sitar, Blue = Real Sitar

dimension. This third dimension could have been used to create a more realistic tone.

The model could have been made even more efficient if the Karplus-Strong algorithm

was used for the sympathetic strings although there may have been a loss in the quality

of sound.

7.2 Implementation Issues

All of the implementation issues to do with the model had to do with MaxMSP. A lot of

them were in relation to the CPU. It would have been more efficient to have implemented

this model in C++ as MaxMSP is has a lot of its own processes running when you are
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using the patch, but time constraints would not allow this.

It was also originally planned to use a guitar with MIDI pickups as the interface for the

model but due to the instability of the delay lines in MaxMSP this wasnt feasible. The

ability to bend the strings of the MIDI guitar would have been a nice touch to the sitar

and would have made it more expressive since there is a lot of string bending in real

sitar playing.

The other MaxMSP issue that was encountered had to do with sigvs (Signal Vector

Size). The higher the sigvs, the more accurate the high notes would sound. The reader

may notice that when using the patch, the notes at the higher end of the kslider sound

slightly out of tune. This is due to the fact that the sigvs could only be set to 8. If it is

set any smaller it causes the audio to distort due to the CPU being overloaded.
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Conclusion

The goal of this dissertation was to physically model an instrument that hasnt really been

developed that much in the physical modelling sense. As mentioned before a lot of the

research with regard to physical modelling has been focused on the western classical

guitar. The reason why the sitar may have been over looked so much is maybe because

of its complex design. As there were a lot more factors to be taken into consideration

when it came to modelling this particular instrument.

When this dissertation was originally started it was assumed that the modelling pro-

cess would be relatively simple and the implementation would take a lot less time than

predicted. The reason why the modelling process took so long was because of the non-

linear bridge structure. It took a lot of testing and re-evaluation of parameters before the

desirable sitar tone was achieved.

During the course of the development of the sitar model, as mentioned before, a new and

unique modelling approach was taken with regard to the sitars non-linear bridge struc-
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ture. The dynamically changing delay line that had to be implemented as a result of

the bridge shape was controlled by the Karplus-Strong algorithm. The Karplus-Strong

algorithm being chosen to control this parameter because of how computationally effi-

cient it is and how likened it is to how a real string decays. Immediately after this was

implemented the difference in how realistic the sitars timbre became was noticeable.

The author believes that this modelling approach warrants further investigation as it has

never been implemented before and is a new and innovative approach to this kind of

modelling problem.

By looking at the spectral analysis of the sitar versus the real sitar it could be said

the model was quite successful. Although, there are still a few bugs in the model,

one is to do with regard the tuning particularly at the higher pitches. It would also be

nice to implement the ability to pitch bend the notes. This was attempted but it was

unsuccessful as it MaxMSP kept distorting.

In future research it would also be very interesting to model the effect of amplitude

limitations for the strings at the frets since the sitar has such unique frets. This similar

to what to the non-linear distortion that occurs in the slapbass technique.

It would also be interesting to see what the model sounds like if there was a string

coupling effect applied to the sympathetic strings. It was due to CPU limitations that

this couldn’t be achieved.
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